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The upstream scale of flow development in curved 
circular pipes 
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For steady airflows a t  moderate Dean number (100 < K < 500) axial- and transverse- 
velocity profiles were delineated by anemometry in the entry region of curved circular 
pipes, having curvature ratios R/u of 4.66 or 8. Uniform inlet velocity profiles were 
found to evolve downstream over two inviscid length scales. Axial profiles develop 
on the lengthscale a, the pipe radius. The upstream influence extends at least 6a into 
a bend. Within this region axial development is largely inviscid and apparently 
independent of the radius of curvature R .  Secondary currents develop on the scale 
(aR):. Their initial growth is consistent with a model of vorticity transport based on 
streamline curvature, but instead of progressing monotonically to an asymptotic 
value, this swirl first overshoots, then subsides approximately 2(aR): downstream 
from the inlet. Hawthorne's model of streamline twist appears to account qualitatively 
for this dampening. 

1. Introduction 
It is well known that steady flows through tightly-curved circular pipes generate 

large-scale swirling motions involving the entire flow stream, as seen in the flow 
pattern of figure 8. In one numerical study, peak secondary currents within the 
boundary layer were computed by Yao & Berger (1975) to be greater than 
mainstream axial velocities, even at  a moderate Dean number of 894. As such currents 
produce rapid mixing, a quantitative understanding of their development would have 
wide application to engineering and physiological flow systems. Much insight is 
contained in the study of Agrawal, Talbot & Gong (1978), who used laser-Doppler 
anemometry (of glycerol-water solutions) to illustrate how downstream axial and 
transverse velocity profiles evolve from laminar flat inlet flow. The present investi- 
gation, which stems from Olson's (1971) study of laminar airflow in the first 180" of 
bend in tightly curved pipes, is intended to resolve what lengthscales describe flow 
development over entrance lengths typical of practical flow devices. 

In interpreting our results we have often referred to Yao & Berger's theoretical 
study of flow development in curved pipes. By matching mainstream flow to 
boundary-layer currents, these authors proposed that secondary flows evolve over 
two distinct lengthscales. The extents of these two regions are compared in table 1 
for our experimental curvature ratios R / a  = radius of pipe curvature/pipe radius, 
Reynolds numbers Re = 2 wu/u and Dean numbers K = (a/R):  Re. In  an upstream 
region extending over a path length L - 0.1 ( ~ R K ) :  the development of secondary flow 
is expected to be largely inviscid, being scaled to the axial length parameter (aR):. 
The last apparent vestiges of this inviscid regime disappear by 0.3-0.5 ( ~ R K ) ? ,  
whereupon flow patterns develop asymptotically on a downstream scale ( ~ R K ) ; .  It 
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Curvature Reynolds Dean Equivalent Curved pipe Curved pipe 
ratio number number straight pipe upstream length? fully developed$ 
Rla Re K LID x 0.06 Re L / D  x 0.2 (aRK)i/a L I D  = e ,  (aRK)t/Za 

(a )  iV= 12 cm/s 
4.66 300 140 18.0 5.1 40.9 
8.0 290 103 17.4 5.7 38.8 

( b )  w =  44 cm/s 
4.66 1080 500 64.8 9.7 77.2 
8.0 1 loo 390 66 .O 11.2 75.4 

Figure 3(a, b )  of Yao & Berger (197.5). 
$ Equation 30 of Yao & Berger, with 2.7 < e ,  < 3.2. 

TABLE 1.  Predicted entry lengths for experimental inlet conditions, expressed in pipe diameters D 

is apparent in table 1 that  our 180" pipe bends, which extend a length of 7.3 (or 12.6) 
diameters for R / a  = 4.66 (or 8), barely enter Yao & Berger's downstream regime. 
Therefore only their upstream scale (aR): is pertinent to this investigation. 

It would be surprising if all the detailed flow structures stemming from a flat inlet 
profile should evolve over the single lengthscale (aR):, since initially swirl is confined 
to  the viscous boundary layer while axial development occurs largely in the inviscid 
core. Moreover, Yao & Berger used a modal analysis which employed fully developed 
axial velocity profiles, favouring the outer wall of the pipe bend : by contrast, Singh 
(1974) showed analytically that a uniform injection velocity forms a potential line 
vortex that causes flow first to  shift inwards, rather than outwards. This inviscid 
structure, which has been observed experimentally by Agrawal et al., persists 
downstream in modified form as the core flow accelerates due to boundary-layer 
displacement, as seen in figure 3 (a) .  I ts  presence could be expected to  influence the 
scale over which upstream structures evolve, and we shall show that two inviscid 
scales, (aR): and a, are needed to describe flow development in the entrance region. 

How axial profiles develop is especially pertinent to  the formation of swirl. 
Hawthorne (1951) proposed that secondary currents in bent pipes are self-limiting: 
their growth and subsequent dampening are determined in part by the rate at which 
their streamlines are deflected and twisted by the secondary motion. Since the rate 
of twist must also depend on how rapidly fluid is convected downstream, the two most 
prominent flow structures - axial-velocity profiles and transverse currents - must 
interact to produce downstream flow patterns representative of a particular inlet 
condition. This report contains quantitative results of this interaction for the special 
case of a flat inlet profile. 

2. Methods 
Two circular curved pipes were machined in half sections from Plexiglas, using a 

semicircular cutter to ensure 1 yo geometric accuracy. Internal walls were polished 
prior to  assembling the flow sections, which were 3.81 cm (1.5 in.) inner diameter, 
extended through 300" of arc, and had curvature ratios Ria of 4.66 or 8. An axial 
fan supplied steady low-pressure airflow, which was stabilized by passage through 
an upstream plenum and heat exchanger, then screened and straightened prior to  
entry into the test section. Volume flow rates were monitored by rotameters to within 
f 5 yo accuracy. 
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FIGURE 1. (a) Detail of the pulsed-probe anemometer, showing the mounting of the high-temperature 
pulse wire and the thermosensitive sensor wire. (b) The flow system, showing the test section 
mounted on an upstream plenum and entrance bell, and the pulsed-probe anemometer positioned 
on the pipe wall. ( c )  Configuration of vertical (1-5) and horizontal (6-10) probe traverses, with 
corresponding X- and Y-components of secondary velocity. Inner wall of pipe bend is towards left. 
Parabolic inlet velocity profile, R / a  = 4.66, K = 510, w =  45 cm/s, at 180" of bend. Length and 
velocity scales: each interval between traverses = 0 . 3 ~  = 0.3 W cm/s. (a) and ( c )  are from Olson 
et al. (1984); reproduced by permission of ASME. 
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Transverse (X, Y )  and axial (2) velocity components were measured a t  selected 
downstream intervals, using a pulsed-probe anemometer inserted into the flow stream 
through tightly fitted slots milled into the pipe walls (figure l b ) .  This device, as 
described by Olson, Parker & Snyder (1984), determines pointwise velocities by 
measuring the transport time and direction of a thermal pulse initiated a t  an 
upstream wire and sensed at a downstream wire thermistor (figure 1 a). The transport 
time gives a reproducible measure of local velocity for a given wire separation, 
determined microscopically. The probe tip was positioned by a micromanipulator at 
intervals of O.la along the five vertical and five horizontal traverses shown in figure 
1 (c). Along each traverse the magnitude V, and direction a of pointwise velocities 
were found by rotating the probe tip until the velocity signal was maximal. Thus 
two mutually perpendicular local measurements of speed and direction, ( V,, a) and 
( Va, p), were obtained at each intersection point in the cross-sectional grid. Using the 
empirically determined probe yaw response, all three pointwise velocity components 
were then computed from the expressions 

V = V,(cosp)-i = Va(cosa)-i (empirical yaw response), (la) 

V, = V sin a cos p( 1 - sin2 a sin2 P)-t ,  
V, = V cos a sin p( 1 - sin2 a sin2 P)-t, 

V, = Vcosa cosp(1-sin2a sin2p)-t. 

(1 b)  

(1 c) 

(1 4 

Between intersection points, velocity components were evaluated using linearly 
interpolated estimates of the yaw angle. Axial-velocity distributions were then 
integrated over each cross-section to determine volume flow rate, which yielded f 5 yo 
agreement with the corresponding rotameter reading. 

Preliminary testing demonstrated probe position to be resolved to within k0.5 mm 
and direction to  within f 1". Pointwise velocities usually were repeatible to within 
5 yo when the probe was inserted from opposite walls of the pipe, and symmetric to  
the same degree about the symmetry plane. Therefore we infer that secondary 
velocities were usually determined to within +5  % accuracy. 

Table 1 lists the Reynolds and Dean numbers at which the experiments were 
carried out. Axial and transverse velocity distributions were determined a t  20", 40°, 
60", 90" and 180" of bend angle for flat inlet profiles. These cases were supplemented 
by examples of downstream distributions derived from parabolic inlet profiles. 

Inlet parabolic profiles were formed by connecting a thermally isolated straight 
pipe 100 diameters in length directly to the inlet of the curved pipes. The velocity 
profiles labelled 'entrance' in figure 3 ( b )  were determined to  be within + 1 yo of a 
parabolic distribution, and the flow direction to  be aligned within lo to the pipe 
axis. Flat inlet profiles were produced by attaching an entrance bell of empirical 
design 1.6 cm upstream of the curved pipes. The profiles labelled 'entrance ' in figure 
3(a)  were measured at the bell mouth, using a straight outrun of 30 cm attached 
downstream of the bell to prevent exit effects. Velocity profiles produced by this bell 
were determined to  be flat within 1 yo in the central region (0 < r /a  < 0.75) of the 
flow stream and aligned within 1" to  the pipe axis. However, we view these results 
with caution for the following reasons. 

Once the straight outruns were replaced by the curved pipes, anemometer 
measurements taken 3 mm downstream from the onset of pipe curvature (labelled 
0" in figure 3 a )  revealed the presence of definite velocity gradients aW/aX across the 
horizontal centreline. Thus the inlet profiles were probably distorted by the abrupt 
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FIQURE 2. The angular distribution of inlet azimuthal vorticity 52 = a W/ar in the wall vortex ring, 
as estimated from wall gradients averaged over 0.8 < r /a  < 1 .O. Solid lines are hot-wire anemometer 
measurements taken 3 mm downstream of the inlet; dashed lines are corresponding measurements 
with the curved pipe replaced by a straight outrun. Inner wall of pipe bend at 90'. Closed symbols, 
Re = 300; open symbols, Re = 1100; circles, Rla = 4.66; squares, R/a = 8.0. 

formation of the potential line vortex. It is likely that downstream pressure 
distributions within our test sections retarded outer-wall velocities upstream of the 
curved-pipe entrance, as Humphrey, Taylor & Whitelaw (1977) noted for turbulent 
entrance flows through curved pipes of rectangular cross-section. As it was important 
to establish how much the resulting inlet profiles deviated from an axisymmetric 
distribution, the angular distribution of inlet azimuthal vorticity Q = a W/ar ,  
averaged over the thickness of the wall vortex ring 0.8 < r / a  < 1 ,  was compared in 
figure 2 with the unperturbed case resulting from a straight outflow. Although the 
presence of the line vortex results in a much more asymmetric distribution of wall 
vorticity, mean values fall within 10 Yo of those obtained with an initially flat profile. 
Moreover, no secondary currents could be detected 3 mm downstream from the inlet. 

Consistent with the formation of a line vortex, Agrawal et al. have noted that the 
quantity G-' = - ( W/a) ,  (a W/aX);l ,  evaluated across the horizontal centreline, 
should equal R/a,  the curvature ratio. In  our experiments pulsed-probe measurements 
of axial velocity profiles a t  20" of bend yielded values of 5.4 & 0.5 and 11 .O & 1 .5  for 
curvature ratios of 4.66 and 8 respectively. This result corresponds to a deviation 
of less than 3 yo from an idealized axial profile. We conclude that, while skewed inlet 
profiles may have altered the earliest stages of flow development, flow patterns 
0.75 (aR)t or more downstream of the inlet are unlikely to be more than 5 yo different 
from those evolving from ideally uniform inlet profiles. 
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FIQURE 3. Velocity profiles, from hot-wire anemometry, in the symmetry plane at the indicated 
bend angles: (a) flat; ( b )  parabolic inlet profiles. Horizontal axis is non-dimensional pipe radius, 
with - 1 .Oat inner wall of bend. Profiles labelled ‘entrance’ were measured with curved pipe absent; 
position Oo was 3 mm downstream from the onset of bend. Mean axial velocity W = 42 cm/s, 
Rla = 4.66. 

3. Results 
Preliminary observations of flow development were made by positioning a hot-wire 

anemometer in the symmetry plane of the bend a t  several locations downstream from 
the pipe entrance. Examples of such traces, in figures 3(a, b ) ,  are taken from Olson’s 
complete set of illustrations comprising Re between 180 and 1630. It is evident in 
this figure that flat and parabolic inlet profiles evolve into distinctly different 
downstream sequences, proving that the influence of the inlet condition persists far 
downstream. These transition patterns suggested a key to identifying the scale of 
upstream flow development. By inspection, the lengthscale 8 = L / R  used in figure 
3 nearly matches stages of kinematically similar axial development over a range of 
flow rates, for a given inlet profile and curvature ratio. Thus axial flow development 
must be largely inviscid, and in this section we shall show this quantitatively for the 
developing axial profile in the central core. 

The patterns of developing axial flow can be displayed to  advantage using 
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isovelocity contours, which emphasize the two-dimensional nature of the flow 
structures. These contours were constructed from our pulsed-probe data by linearly 
interpolating within the cross-sectional grid of pointwise velocity components. The 
downstream evolution of a flat inlet profile is compared in figures 4(a-d) for all 
experimental cases, and reveals three characteristic stages of development. Initially, 
at 20" of bend, flow is shifted strongly towards the inside of the pipe by the potential 
line vortex. An intermediate stage is characterized by the formation of a 'crescent ' 
of high-velocity fluid moving progressively towards the outside of the bend. The 
presence of local velocity maxima that are offset from the central axis suggests a 
convective effect of transverse currents, which sweep outwards centrally and inwards 
peripherally. Moreover, as axial flow shifts outwards the boundary layer becomes 
highly non-uniform : progressively thickening on the inner wall, while thinning 
significantly along the outside. By 180" of bend, this stage has been superseded by 
contours aligned more nearly parallel to the vertical axis of the pipe, as centrifugal 
force becomes dominant. Peak velocities are confined to a single region, centred on 
the symmetry plane near the outside of the pipe bend. 

Thus it is apparent, in figures 3 and 4, that axial flow patterns undergo significant 
transverse shifts as development proceeds stagewise. This flow shift can be quantified 
by computing the first moment, or centre of momentum, of each axial profile : 

J- i  J 
P* 8 

Integration of (2) was carried out numerically over the Cartesian grid of velocity 
components defined by the probe traverses, analogous to the computation of flow rate. 
Resulting stagewise values of ( X / a )  are found to develop on an axial scale a for both 
flat (figure 5a)  and parabolic (figure 5 b )  inlet profiles. In figure 5 ( a )  there appears 
to be no effect of Reynolds number over entrance lengths L < 6a. Instead, each 
experimental case first shifts inwards, crosses the pipe axis at L w 2.4u, and tends 
monotonically towards an ultimate flow pattern that is split approximately 6040  yo 
between outer and inner halves of the pipe. Only in this last regime do viscous effects 
become evident. 

These results appear to imply that the transverse flow shift develops independently 
of pipe curvature. Given the underlying importance of the potential vortex, whose 
intensity does depend on R/a,  this outcome was unexpected. Nevertheless this 
conclusion is corroborated by computations derived from data of Agrawal et al., which 
are included in figure 5 (a). 

By comparing figures 5 (a) and 5 (a), the effect of the inlet condition can be seen 
to extend far beyond L = 6u, into a downstream region where Re is important. The 
parabolic inlet cases produce values of ( X / a )  at L = 2 5 . 1 ~  that diverge markedly 
from the sequences followed by flat-inlet cases, as indicated by the dashed lines. These 
differences are far greater than can be accounted for by any flow asymmetry between 
upper (U) and lower (L) halves of the pipes, and thus support the view of Yao & Berger 
that the asymptotic stage of flow development is quite extended. 

To complete the description of developing flow, downstream sequences of secondary 
currents evolving from flat inlet profiles are presented in figures 6 (a-d), for each Re 
and curvature ratio. In all cases boundary-layer current is already strong 20" into 
the bend, in accord with Agrawal's observations. This current initially is most intense 
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FIGURE 4(a, b ) .  For description see opposite. 
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FIQURE 4. Axial isovelocity contours within the first 180" of curved pipes, flat inlet profile. 
Horizontal axis is non-dimensional pipe radius, with - 1 .O at inner wall of bend. (a) R / a  = 4.66, 
K = 140, w =  12.1 cm/s; ( b )  8.0, 103, 11.8 cm/s; (c) 4.66, 500, 43.8 cm/s; (d )  8.0, 390, 44.6 cm/s. 
Each contour is normalized to the mean axial velocity V. 
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along the vertical axis lying perpendicular to the symmetry plane, but a t  40’ begins 
to favour the inner wall (compare P with P’ in figure 6d).  As shown below, this shift 
coincides with a pronounced increase in axial vorticity . Downstream, the maximal 
current reverts to the vertical axis, while decreasing as much as threefold. Hence this 
‘overshoot ’ in secondary current is characterized by changes in both distribution and 
magnitude throughout the region of flow development, analogous t o  the transverse 
swings in the axial velocity profile. 

Swirl intensity is sometimes estimated experimentally by means of a helical pitch 
9, defined as the axial length required for a fluid parcel entrained in an  eddy to trace 
a complete circuit : 

local axial velocity 
local eddy velocity 

ds. 

However, eddy patterns associated with these developing currents are not kinemati- 
cally similar to the closed eddies of developed flow. As seen in figure 6, the central 

FIGURE 5. The downstream evolution of transverse mhifts in axial velocity, expressed as the first 
moment ( X / a )  versus entrance length in units of pipe radius a, for (a) flat and (b) parabolic inlet 
profiles. Closed symbols, Re = 300; open symbols, Re = 1100; circles, R/a = 4.66; squares, 
R / a  = 8.0; triangles, inlet data from hot-wire anemometry. U = upper half of pipe cross-section; 
L = lower half. x , + , derived from data of Agrawal et a2. (1978) for water-glycerol solutions: 
Rla = 7, K = 183 and Rla = 20, K = 565 respectively. The dashed lines trace the sequence of 
developing flat profiles, and thus in (b) indicate that flow did not become developed. 
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FIGURE 6. X and Y secondary velocity profiles within the first 180' of curved pipes, flat inlet profile. 
Locations of traverses as in figure 1 .  Horizontal traces are transposed from upper half of pipe, and 
thus are shown inverted. (a)  R / a  = 4.66, K = 140, r= 12.1 crn/s; ( b )  8.0, 103, 11.8 cm/s; (c) 4.66, 
500,43.8 cm/s; (d) 8.0,390,44.6 cm/s. Note the shift in the position of peak boundary-layer current 
from P to P .  All secondary velocities are normalized to r. 

cross-flows exhibit highly non-uniform motions ; in some instances they may even 
reverse their usual outward movement, as inferred by Hawthorne (1951) from 
measurements of total pressure. The circulating eddies of the more developed flow 
pattern seen in figure 8 have a pitch of about 25 diameters, which is consistent with 
Taylor's (1929) observations of dye traces entrained in the boundary-layer of fully 
developed flow. Clearly, pitch yields a much weaker estimate of eddy strength than 
the patterns in figure 6 would suggest. This is because cross-flows in the inviscid core 
are much smaller than the local axial velocities. Thus pitch is limited by the weak 
central cross-flows, and is insensitive to the strong boundary-layer currents. 

Rather than pitch, these secondary currents are better quantified by defining 
circulation loops typical of the inviscid core (figure 7 a ) ,  the 'maximal' circulation 
(figure 7 b) and the boundary layer (figure 7 c ) .  The maximal and boundary-layer paths 
were chosen so as to  maximize circulation, while the inviscid loop was a fixed path 
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FIGURE 7. Development of mean axial vorticity f = r / l o o ~ ,  area: (a)  in central core, on a lengthscale 
a ;  ( b  on maximal circulation path, on a lengthscale (aR)r; (c) in boundary layer, on a lengthscale 

Re = 300; open symbols, Re = 1100; circles, R / a  = 4.66; squares, R / a  = 8.0 x , +, derived from 
data of Agrawal et al. (1978) for water-glycerol solutions: R / a  = 7, K = 138 and 678 respectively. 

1 1  

(aR) 1 /Re!.  Solid line in (c) is derived from Hawthorne's inviscid theory (6). Closed symbols, 
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enclosing half the pipe cross-section, and thus reflects the total circulation. The 
circulation integrals were evaluated using the approximation 

r = &dloOp = $a*da x Z [ U,Az,+ V, Ay,], 

where 77, and V, are the mean X- and Y-velocities on the ith path segment (Azt, Ay,). 
All the circulation loops show a pattern of rapid initial growth in streamwise 

vorticity g, followed by a pronounced overshoot in g within two diameters downstream 
of the inlet. The occurrence of vorticity overshoot in both the boundary layer (E,,) 
and central core ( E , )  suggests that these secondary motions are coupled, although 
in detail their development is somewhat different. As described below, transverse 
motion in the central core evolves on a lengthscale a, while boundary-layer swirl 
develops on an upstream scale (aR);. 

The initial strength of secondary currents in the central core must be a consequence 
of how the potential line vortex forms and intensifies. Thus it is plausible that these 
currents should develop on the same lengthscale a as do the axial velocities. When 
& is scaled non-dimensionally to account for both Agrawal’s results and ours, two 
distinct modes of flow development seem to occur, as indicated by the numbered 
dashed lines in figure 7(a ) .  A t  low Dean numbers K (path l),  E ,  intensifies early in 
the bend and then subsides much as do the other circulation integrals. At higher K 

(path 2) the degree of early intensification is not as prevalent, reflecting the reversal 
of central secondary currents seen in figure 6 ( c ) .  Agrawal’s high-K case is noteworthy 
in that it appears to trace a transition path from one mode to the other. Yao & Berger 
have in fact suggested that such motions of the central core could be quite different 
for low and high K ,  owing to the relatively greater importance of centrifugal effects 
in the latter case. 

Both maximal-circulation loops (figure 7 b) and boundary-layer paths (figure 7c) 
are better correlated with the lengthscale (aR)t. Each data set shows only a small 
dependence on Re ; and the initial growth of boundary-layer swirl is actually inviscid, 
as will be shown in the discussion to follow. Maximal loops applied to Agrawal’s data 
yield estimates of Em,, that show qualitatively this same growth and relaxation.? This 
common pattern observed over a range of Dean numbers implies that the initial 
development of boundary-layer currents is kinematically similar in all cases if 
entrance lengths are scaled to Yao’s upstream scale (aR);. 

We have already remarked that our flow sections must have been too short to allow 
the completion of axial flow development. It is also doubtful whether secondary 
currents became fully developed even after 180’ of bend angle, as can be inferred by 
comparing an example of downstream secondary currents resulting from parabolic 
inlet flow, in figure 8, with the corresponding cases for flat inlet profiles in figure 6. 
The central cross-flows a t  180’ of bend are noticeably different, and the parabolic 
case displays twin secondary vortices imbedded in the large-scale vortex pair. Thus 
entrance lengths in curved pipes extend through 12 ( u R ) ~ ,  for the moderate values 
of K used in this study. Verifying the downstream scale (a&)+ proposed by Yao & 
Berger would require a much wider range of curvature ratios, as well as smaller 
margins of experimental uncertainty ! 

Varieties of the four-vortex structure seen in figure 8 have been reported previously 
by several authors. Agrawal et al. interpreted transverse flow reversals, arising near 
the inner wall at L / a  = 6.11 (2.3 (aR)!) for K = 678, as secondary vortex pairs 

7 As Agrawal’s published data include only one transverse velocity component, a quantitative 
comparison with our results is not possible except in the case of figure 7 (a). 

d 
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Outer 
wall 

FIGURE 8. Axial isovelocity contours at 180" of bend for parabolic inlet profile, Rla = 4.66, K = 510, 
= 45 cm/s. Superimposed arrows show the direction of transverse velocities, with relative 

magnitudes scaled by the arrow lengths. From Olson et al. (1984); reproduced by permission of 
ASME. 

imbedded within the Dean-type swirl. They reported that vestiges of this structure 
could be traced through L/a  = 16.49 (6.2 (all$). Using axisymmetric turbulent inlet 
flow, Rowe (1970) also observed such twin imbedded vortices near the outer pipe wall 
at 180' of bend, and attributed their origin to  the drift of streamwise secondary 
vorticity. By his proposed mechanism, the secondary currents were weaker at the 
inner wall, allowing the vortex filaments to  drift closer together and form a twin 
vortex roll-up. This concentrated vorticity would then be propelled toward the outer 
wall by central cross-flows. Akiyama et al. (1983) also have reported that twin 
imbedded vortices are formed downstream along the outer wall, for laminar parabolic 
inlet flow. 

Of course, our flow sections were too short to  resolve whether these features 
represent a transitional regime, or persist in fully developed flow. The latter outcome 
would substantiate a recent theoretical result of Dennis & Ng (1982) that solutions 
to fully-developed curved pipe flow are not unique, and thus depend in principle on 
inlet conditions. While these authors exhibit a four-vortex numerical solution, the 
associated axial flow pattern has globally maximal values offset from the centreline 
of symmetry, a detail which is not seen in either Agrawal's data or ours. 

4. Discussion 
These experimental results partly confirm theoretical predictions that secondary 

flows in curved circular pipes develop initially over the inviscid lengthscale (aR)i for 
moderate Dean numbers. Thus Yao's proposed upstream scale appears to be 
appropriate; but his theory, based on a general conservation of mass and momentum, 
leaves unexplored how specific flow features may develop. In this section we attempt 
to relate specific experimental results to other theoretical models of inviscid secondary 
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flow. These models provide additional grounds for expecting (aR): to be an inviscid 
lengthscale in curved pipes. 

We consider first a theory of vorticity transport in uniform bends as developed by 
Squire BE Winter (1951) and extended by Hawthorne (1951, 1961). Their analyses 
predict that the growth of secondary streamwise vorticity along a streamline having 
curvature R and located at an angle in - 4 out of the symmetry plane is given by 

6 = -2ea cos$, (3) 

where a is the inlet azimuthal vorticity and 8 (= L/R) is the deflection of the 
streamline over a path length L. As this model neglects viscous effects and streamline 
displacement, (3) is pertinent only to the initial growth of secondary currents. 

In our experiments inlet vortex rings were confined to the wall, so that (3) can be 
applied only to the growth of secondary currents within the boundary layer. 
Moreover, as Squire’s analysis assumes inviscid flow and neglects boundary-layer 
growth, we might expect f in (3) to overestimate our experimental values ZBL 

( = rBL/loop area). This relation was tested by estimating the wall velocity gradients 
aW/ar (=  Q) at the inlet to the curved pipes,t averaging over $, and forming the 
ratio EBL/<B cos 4). The results are shown in figure 7 (c), using an axial lengthscale 
(aR)h Re-4 to reconcile upstream inviscid transport and downstream viscous effects. 
The initial linear slope in this figure represents a regime of inviscid growth, 
gBL = -0.578(a cos$), which describes all four experimental cases through at least 
20’ of bend. While the numerical results differ from a preliminary account of Olson 
& Snyder (1983) (who used an erroneous value of R / a ) ,  it  seems clear that the initial 
growth of secondary currents in the boundary layer agrees qualitatively with Squire’s 
mechanism. We conclude that overshoot may occur because inviscid growth permits 
the build-up of intense boundary-layer currents long before the axial-velocity profile 
can be restructured by convection. 

As is evident in figure 7 (c ) ,  boundary-layer currents evolving from flat inlet profiles 
eventually subside to ‘asymptotic’ values gBL/(SL cos $) = - (3.1 k0.7) (R/a)-f  Re-f. 
The question arises as to why Squire’s mechanism ceases to be effective in maintaining 
initial growth rates downstream from L = 2 (aR)h. Hawthorne extended this analysis 
by proposing that the build-up of intense secondary currents would be self-limiting, 
causing streamlines to be deflected away from regions of high vorticity transport as 
flow progressed downstream. The effect is implied in (3) by the factor cos$, which 
accounts for the component of streamline acceleration that promotes secondary 
vorticity. In Hawthorne’s formulation, a = ?jn - $ is a measure of streamline twist 
and depends on the cumulative bend deflection 8. By comparing secondary current 
with axial velocity, he showed that the net twist a over a uniformly curved bend could 
be approximated by an elliptic function of 8, analogous to the large-scale periodic 
motion of a pendulum. 

From this result Hawthorne predicted that streamlines should turn first towards 
the inner wall, then outwards, as flow proceded downstream. For inlet turbulent 
airflow, he observed that the streamline of maximal total pressure shifted downstream 
in accord with this theory, reversing its twist at sites very near the themetical zeroes 
of his solution. To account for this motion he inferred that the secondary currents 
themselves must periodically reverse their rotation. 

t Inlet wall gradients were evaluated by extrapolating hot-wire data at 0.8r/a out to the wall. 
For our entrance bell this location yielded the most consistent readings, while still being within 
the vortex ring. An analogous averaging procedure applied to a parabolic profile would yield better 
than 1 yo agreement between extrapolated and actual mean gradients. 
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Ria = 4.66 Rla = 8.0 

w =  12 cm/s 1 .00  (1.41)t (5.65)$ 1.03 (1.41)t (5.92)$ 
= 44 cm/s 0.79 (1.41)t (4.52)$ 0.74 (1.41)t (3.95)$ 

TABLE 2. Peak values of boundary-layer vorticity (R/a)t ( -fBL/(Q cos$)) compared with 
models of: 

t Hawthorne: (R/a) i  ( - 5  J(f2 cosq5)) = 1.41 
$ Squire & Winter: (R /a ) f ( -&,L / (Q  cosq5)) = 2(R/a)!B 

Toapply Hawthorne’s (1951) theory, which wasformulatedforalinearinlet-velocity 
profile, we adapt his derivation to the evolution of an inlet wall vortex ring. It is 
convenient to start with his equation (14), which is a generalized form of our (3). Like 
Hawthorne, we assume the axial velocity remains unchanged along a streamline, so 
that 

To solve this equation an additional relation between a and 0 must be determined. 
Using Hawthorne’s method, we assume that the incremental twist da of a streamline 
in the boundary layer of thickness 6, in a pipe of radius a, can be related to a deflection 
V6dt by 

a d a =  V,dt. (4b) 

In (4b) the mean azimuthal velocity V, is approximated using Stokes’ Theorem 

V, xa = EBL xa 6, 

and the time increment dt is expressed as dt = R d@/+TT, where +Wis taken to be the 
mean axial velocity in the boundary layer. From these expressions, noting that 
0 z W/6, we obtain 

Substituting this expression for d0 into (4a) and differentiating with respect to a, 
we find 

a 
and after integrating x 2  = -2- sina, 

since ~ ( 0 )  = 0. This result implies that streamwise vorticity is maximal at  1.1 = $. 
When inlet vorticity f2 is effectively averaged over all streamlines by the weighting 
factor cos 9, the following expression is obtained : 

Peak experimental values of EBL are compared in table 2 with predictions based 
on Squire’s theory (3) and Hawthorne’s extended result (5). The numerical coefficient 
obtained experimentally, 0.89 & 0.15, is approximately two-thirds that predicted by 
(5), and seems to depend somewhat on fluid velocity. The downstream sites of peak 
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PICXJRE 9. The downstream twist of peak boundary-layer current, as quantified 
moment 

(C) = s" -tn v#Cd"/J-;n V # W  

Each experimental case is fitted to the function 

(9) = A + B  sin[nL/2.75(aR)!]. 

2oo t L 

by the angular 

The amplitude B is constant for a given curvature ratio Rla. 

EBBL also are velocity-dependent, being distributed between 2-3 ( u R ) ~  among our four 
experimental cases. These details are not predicted by either theoretical model, and 
may be due to viscous effects, accounting for the factor Re-: in the axial lengthscale. 
Frictional effects can be incorporated empirically into this model by approximating 
a, an elliptic integral, as 

L Ref L Re: 
a [2.7P (aR):]p [' -'*05 (2 .79  (uR)iy]  

and x = 4.3 - Re3 sinia. (3: 
Expression (6) is represented by the solid line in figure 7(c). An effect of friction is 
seen to reduce the initial growth of swirl by a factor of three, compared with 
Hawthorne's inviscid model. 

6 F L M  150 
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FIGURE 10. A hypothetical scaling of the transverse flow shift ( X l a )  to the lengthscale (aR)k 
Symbols as in figure 5. This formulation predicts ( X / a )  > 1 for Rla 2 900, and therefore can be 
valid only for a limited range of tightly coiled pipes. 

Thus streamline twist appears to account qualitatively for the dampening of 
downstream secondary currents. Hawthorne’s model also reconciles the lengthscale 
(aR):, derived by Y ao from considerations of mass and momentum conservation, with 
the scale R over which Squire’s mechanism promotes secondary vorticity. If twist 
extends far downstream, i t  also supports Rowe’s account of how imbedded vortices 
could first form at 15 (aR):. 

Hawthorne was well aware of certain shortcomings in his model, observing that 
friction was a major factor tending to reduce, rather than promote, secondary 
circulation in bends. Nonetheless the agreement between theory and experiment is 
intriguing primarily because the basic premise regarding azimuthal motion is 
incorrect: neither our data nor those of Agrawal ever show the reversal of boundary- 
layer current that  is assumed to  invert the twist ! Notwithstanding, we have observed 
that peak boundary-layer currents do undergo periodic azimuthal shifts. By taking 
the first angular moment of peak boundary-layer current, 

J v41pea, d# 
-in 

with V6 = V, sin # - V, cos 9, we have quantified this twist effect for each of the flow 
patterns shown in figures 6 (a-d). As summarized in figure 9, in every case the sense 
of twist evolves consistently on a lengthscale (aR): and extends far downstream. 
Perhaps this effect is related to certain ‘elastic’ phenomena, known to be induced 
in rotating fluids by the presence of vorticity. 

It remains unclear why the axial flow shift should scale with a, implying that pipe 
curvature has no influence on how axial profiles or transverse currents develop in 
curved pipes. This result conflicts with physical intuition, so that we consider an 
alternative formulation in figure 10. By normalizing the flow shift ( X / a )  to  (R/a) f ,  
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the data in figure 5(a )  can be rescaled to the lengthscale (aR):. Admittedly we know 
of no rationale for this normalization procedure, which in any case cannot be valid 
for loosely coiled pipes: figure 10 predicts the physically impossible result ( X / a )  > 1 
for R/a  > 900. Nonetheless this formulation correlates all the experimental data 
equally as well as figure 5 ,  and supports the use of the scale (aR)! for both axial profiles 
and boundary-layer swirl. 

Both the axial flow shift and the transverse currents depend on the interaction of 
the inviscid core vortex with centrifugal force. Thus further study of the developing 
potential vortex is needed to understand why axial profiles develop as they do. In 
Singh’s theoretical formulation of entry flow the potential vortex emerges abruptly 
from a uniform injection velocity and is only subsequently modified by boundary-layer 
development. Likewise, Agrawal’s data demonstrate that this flow structure is 
already nearly developed at 0.7 (aR)!, so that the entire region of interest lies very 
near the inlet, where further experimental study is likely to  be difficult. We think 
that theorists might be better placed to resolve how these flow structures arise, and 
whether their development can be described by a single upstream lengthscale. 

5. Conclusions 
Developing axial profiles and secondary currents in tightly -curved pipes evolve on 

separate lengthscales, a and (aR): respectively, over a range of moderate inlet Dean 
numbers. This experimental study confirms that the upstream development of these 
flow structures is largely inviscid and is compatible with theoretical models of 
secondary flow development by Squire & Winter, Hawthorne and Singh. 

Both our study and that of Agrawal et al. used fluids of similar kinematic viscosity 
( -  0.1 cSt) in pipes of the same diameter (3.8 cm inner diameter), so that the scaling 
rules we propose can be substantiated only in part. It would be useful to complement 
these investigations using other fluids of different kinematic viscosities, over a wide 
range of curvature ratios. 
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